Parameterized code SHARM-3D for radiative transfer over inhomogeneous surfaces.

نویسندگان

  • Alexei Lyapustin
  • Yujie Wang
چکیده

The code SHARM-3D, developed for fast and accurate simulations of the monochromatic radiance at the top of the atmosphere over spatially variable surfaces with Lambertian or anisotropic reflectance, is described. The atmosphere is assumed to be laterally uniform across the image and to consist of two layers with aerosols contained in the bottom layer. The SHARM-3D code performs simultaneous calculations for all specified incidence-view geometries and multiple wavelengths in one run. The numerical efficiency of the current version of code is close to its potential limit and is achieved by means of two innovations. The first is the development of a comprehensive precomputed lookup table of the three-dimensional atmospheric optical transfer function for various atmospheric conditions. The second is the use of a linear kernel model of the land surface bidirectional reflectance factor (BRF) in our algorithm that has led to a fully parameterized solution in terms of the surface BRF parameters. The code is also able to model inland lakes and rivers. The water pixels are described with the Nakajima-Tanaka BRF model of wind-roughened water surface with a Lambertian offset, which is designed to model approximately the reflectance of suspended matter and of a shallow lake or river bottom.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part II. Homogeneous Lambertian and anisotropic surfaces.

This is the second part of the validation effort of the recently developed vector version of the 6S (Second Simulation of a Satellite Signal in the Solar Spectrum) radiative transfer code (6SV1), primarily used for the calculation of look-up tables in the Moderate Resolution Imaging Spectroradiometer (MODIS) atmospheric correction algorithm. The 6SV1 code was tested against a Monte Carlo code a...

متن کامل

Radiative transfer codes for atmospheric correction and aerosol retrieval: intercomparison study.

Results are summarized for a scientific project devoted to the comparison of four atmospheric radiative transfer codes incorporated into different satellite data processing algorithms, namely, 6SV1.1 (second simulation of a satellite signal in the solar spectrum, vector, version 1.1), RT3 (radiative transfer), MODTRAN (moderate resolution atmospheric transmittance and radiance code), and SHARM ...

متن کامل

CRASH3: cosmological radiative transfer through metals

Here we introduce CRASH3, the latest release of the 3D radiative transfer code CRASH. In its current implementation CRASH3 integrates into the reference algorithm the code Cloudy to evaluate the ionisation states of metals, self-consistently with the radiative transfer through H and He. The feedback of the heavy elements on the calculation of the gas temperature is also taken into account, maki...

متن کامل

A 3-dimensional Radiative-transfer Hyperspectral Image Simulator for Algorithm Validation

We are currently developing a high model fidelity HyperSpectral Image simulation software package. It is based on a Direct Simulation Monte Carlo approach for modeling 3D atmospheric radiative transport, as well as spatially inhomogeneous surfaces including surface BRDF effects. “Ground truth” is accurately known through input specification of surface and atmospheric properties, and it is pract...

متن کامل

Radiation Parameterization for Three-Dimensional Inhomogeneous Cirrus Clouds: Application to Climate Models

The effects of cirrus clouds on the radiation budget of the earth and the atmosphere, and hence their impact on weather and climate processes, have been articulated by Liou (1986, 1992). Cirrus clouds are frequently finite and highly inhomogeneous based on satellite and replicator sounding observations (Ou et al. 1995; Heymsfield and Miloshevich 1993). Potential effects of the cloud geometry an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied optics

دوره 44 35  شماره 

صفحات  -

تاریخ انتشار 2005